Kafka
此引擎与 Apache Kafka 结合使用。
Kafka 特性:
- 发布或者订阅数据流。
- 容错存储机制。
- 处理流数据。
老版格式:
Kafka(kafka_broker_list, kafka_topic_list, kafka_group_name, kafka_format
      [, kafka_row_delimiter, kafka_schema, kafka_num_consumers])
新版格式:
Kafka SETTINGS
  kafka_broker_list = 'localhost:9092',
  kafka_topic_list = 'topic1,topic2',
  kafka_group_name = 'group1',
  kafka_format = 'JSONEachRow',
  kafka_row_delimiter = '\n',
  kafka_schema = '',
  kafka_num_consumers = 2
必要参数:
- kafka_broker_list– 以逗号分隔的 brokers 列表 (- localhost:9092)。
- kafka_topic_list– topic 列表 (- my_topic)。
- kafka_group_name– Kafka 消费组名称 (- group1)。如果不希望消息在集群中重复,请在每个分片中使用相同的组名。
- kafka_format– 消息体格式。使用与 SQL 部分的- FORMAT函数相同表示方法,例如- JSONEachRow。了解详细信息,请参考- Formats部分。
可选参数:
- kafka_row_delimiter- 每个消息体(记录)之间的分隔符。
- kafka_schema– 如果解析格式需要一个 schema 时,此参数必填。例如,普罗托船长 需要 schema 文件路径以及根对象- schema.capnp:Message的名字。
- kafka_num_consumers– 单个表的消费者数量。默认值是:- 1,如果一个消费者的吞吐量不足,则指定更多的消费者。消费者的总数不应该超过 topic 中分区的数量,因为每个分区只能分配一个消费者。
示例:
  CREATE TABLE queue (
    timestamp UInt64,
    level String,
    message String
  ) ENGINE = Kafka('localhost:9092', 'topic', 'group1', 'JSONEachRow');
  SELECT * FROM queue LIMIT 5;
  CREATE TABLE queue2 (
    timestamp UInt64,
    level String,
    message String
  ) ENGINE = Kafka SETTINGS kafka_broker_list = 'localhost:9092',
                            kafka_topic_list = 'topic',
                            kafka_group_name = 'group1',
                            kafka_format = 'JSONEachRow',
                            kafka_num_consumers = 4;
  CREATE TABLE queue2 (
    timestamp UInt64,
    level String,
    message String
  ) ENGINE = Kafka('localhost:9092', 'topic', 'group1')
              SETTINGS kafka_format = 'JSONEachRow',
                       kafka_num_consumers = 4;
消费的消息会被自动追踪,因此每个消息在不同的消费组里只会记录一次。如果希望获得两次数据,则使用另一个组名创建副本。
消费组可以灵活配置并且在集群之间同步。例如,如果群集中有10个主题和5个表副本,则每个副本将获得2个主题。 如果副本数量发生变化,主题将自动在副本中重新分配。了解更多信息请访问 http://kafka.apache.org/intro。
SELECT 查询对于读取消息并不是很有用(调试除外),因为每条消息只能被读取一次。使用物化视图创建实时线程更实用。您可以这样做:
- 使用引擎创建一个 Kafka 消费者并作为一条数据流。
- 创建一个结构表。
- 创建物化视图,改视图会在后台转换引擎中的数据并将其放入之前创建的表中。
当 MATERIALIZED VIEW 添加至引擎,它将会在后台收集数据。可以持续不断地从 Kafka 收集数据并通过 SELECT 将数据转换为所需要的格式。
示例:
  CREATE TABLE queue (
    timestamp UInt64,
    level String,
    message String
  ) ENGINE = Kafka('localhost:9092', 'topic', 'group1', 'JSONEachRow');
  CREATE TABLE daily (
    day Date,
    level String,
    total UInt64
  ) ENGINE = SummingMergeTree(day, (day, level), 8192);
  CREATE MATERIALIZED VIEW consumer TO daily
    AS SELECT toDate(toDateTime(timestamp)) AS day, level, count() as total
    FROM queue GROUP BY day, level;
  SELECT level, sum(total) FROM daily GROUP BY level;
为了提高性能,接受的消息被分组为 max_insert_block_size 大小的块。如果未在 stream_flush_interval_ms 毫秒内形成块,则不关心块的完整性,都会将数据刷新到表中。
停止接收主题数据或更改转换逻辑,请 detach 物化视图:
  DETACH TABLE consumer;
  ATTACH TABLE consumer;
如果使用 ALTER 更改目标表,为了避免目标表与视图中的数据之间存在差异,推荐停止物化视图。
配置
与 GraphiteMergeTree 类似,Kafka 引擎支持使用ClickHouse配置文件进行扩展配置。可以使用两个配置键:全局 (kafka) 和 主题级别 (kafka_*)。首先应用全局配置,然后应用主题级配置(如果存在)。
<kafka>
    <!-- Global configuration options for all tables of Kafka engine type -->
    <debug>cgrp</debug>
    <statistics_interval_ms>3000</statistics_interval_ms>
    <kafka_topic>
        <name>logs</name>
        <statistics_interval_ms>4000</statistics_interval_ms>
    </kafka_topic>
    <!-- Settings for consumer -->
    <consumer>
        <auto_offset_reset>smallest</auto_offset_reset>
        <kafka_topic>
            <name>logs</name>
            <fetch_min_bytes>100000</fetch_min_bytes>
        </kafka_topic>
        <kafka_topic>
            <name>stats</name>
            <fetch_min_bytes>50000</fetch_min_bytes>
        </kafka_topic>
    </consumer>
    <!-- Settings for producer -->
    <producer>
        <kafka_topic>
            <name>logs</name>
            <retry_backoff_ms>250</retry_backoff_ms>
        </kafka_topic>
        <kafka_topic>
            <name>stats</name>
            <retry_backoff_ms>400</retry_backoff_ms>
        </kafka_topic>
    </producer>
</kafka>
有关详细配置选项列表,请参阅 librdkafka配置参考。在 ClickHouse 配置中使用下划线 (_) ,并不是使用点 (.)。例如,check.crcs=true 将是 <check_crcs>true</check_crcs>。
Kerberos 支持
对于使用了kerberos的kafka, 将security_protocol 设置为sasl_plaintext就够了,如果kerberos的ticket是由操作系统获取和缓存的。 clickhouse也支持自己使用keyfile的方式来维护kerbros的凭证。配置sasl_kerberos_service_name、sasl_kerberos_keytab、sasl_kerberos_principal三个子元素就可以。
示例:
  <!-- Kerberos-aware Kafka -->
  <kafka>
    <security_protocol>SASL_PLAINTEXT</security_protocol>
    <sasl_kerberos_keytab>/home/kafkauser/kafkauser.keytab</sasl_kerberos_keytab>
    <sasl_kerberos_principal>kafkauser/kafkahost@EXAMPLE.COM</sasl_kerberos_principal>
  </kafka>
虚拟列
- _topic– Kafka 主题。
- _key– 信息的键。
- _offset– 消息的偏移量。
- _timestamp– 消息的时间戳。
- _timestamp_ms– 消息的时间戳(毫秒)。
- _partition– Kafka 主题的分区。
另请参阅