纽约公共图书馆“菜单上有什么?”数据集
该数据集由纽约公共图书馆创建。其中含有有关酒店、餐馆和咖啡馆的菜单上的菜肴及其价格的历史数据。
来源:http://menus.nypl.org/data 数据为开放数据。
数据来自于图书馆中的档案,因此可能不完整,以至于难以进行统计分析。尽管如此,该数据集也是非常有意思的。数据集中只有 130 万条关于菜单中的菜肴的记录 - 这对于 ClickHouse 来说是一个非常小的数据量,但这仍是一个很好的例子。
下载数据集
运行命令:
wget https://s3.amazonaws.com/menusdata.nypl.org/gzips/2021_08_01_07_01_17_data.tgz
如果有需要可以使用 http://menus.nypl.org/data 中的最新链接。下载的大小约为 35 MB。
解压数据集
tar xvf 2021_08_01_07_01_17_data.tgz
解压后的的大小约为 150 MB。
数据集由四个表组成:
- Menu- 有关菜单的信息,其中包含:餐厅名称,看到菜单的日期等
- Dish- 有关菜肴的信息,其中包含:菜肴名称以及一些特征。
- MenuPage- 有关菜单中页面的信息,每个页面都属于某个- Menu。
- MenuItem- 菜单项。某个菜单页面上的菜肴及其价格:指向- Dish和- MenuPage的链接。
创建表
使用 Decimal 数据类型来存储价格。
CREATE TABLE dish
(
    id UInt32,
    name String,
    description String,
    menus_appeared UInt32,
    times_appeared Int32,
    first_appeared UInt16,
    last_appeared UInt16,
    lowest_price Decimal64(3),
    highest_price Decimal64(3)
) ENGINE = MergeTree ORDER BY id;
CREATE TABLE menu
(
    id UInt32,
    name String,
    sponsor String,
    event String,
    venue String,
    place String,
    physical_description String,
    occasion String,
    notes String,
    call_number String,
    keywords String,
    language String,
    date String,
    location String,
    location_type String,
    currency String,
    currency_symbol String,
    status String,
    page_count UInt16,
    dish_count UInt16
) ENGINE = MergeTree ORDER BY id;
CREATE TABLE menu_page
(
    id UInt32,
    menu_id UInt32,
    page_number UInt16,
    image_id String,
    full_height UInt16,
    full_width UInt16,
    uuid UUID
) ENGINE = MergeTree ORDER BY id;
CREATE TABLE menu_item
(
    id UInt32,
    menu_page_id UInt32,
    price Decimal64(3),
    high_price Decimal64(3),
    dish_id UInt32,
    created_at DateTime,
    updated_at DateTime,
    xpos Float64,
    ypos Float64
) ENGINE = MergeTree ORDER BY id;
导入数据
执行以下命令将数据导入 ClickHouse:
clickhouse-client --format_csv_allow_single_quotes 0 --input_format_null_as_default 0 --query "INSERT INTO dish FORMAT CSVWithNames" < Dish.csv
clickhouse-client --format_csv_allow_single_quotes 0 --input_format_null_as_default 0 --query "INSERT INTO menu FORMAT CSVWithNames" < Menu.csv
clickhouse-client --format_csv_allow_single_quotes 0 --input_format_null_as_default 0 --query "INSERT INTO menu_page FORMAT CSVWithNames" < MenuPage.csv
clickhouse-client --format_csv_allow_single_quotes 0 --input_format_null_as_default 0 --date_time_input_format best_effort --query "INSERT INTO menu_item FORMAT CSVWithNames" < MenuItem.csv
因为数据由带有标题的 CSV 表示,所以使用 CSVWithNames 格式。
因为只有双引号用于数据字段,单引号可以在值内,所以禁用了 format_csv_allow_single_quotes 以避免混淆 CSV 解析器。
因为数据中没有 NULL 值,所以禁用 input_format_null_as_default。不然 ClickHouse 将会尝试解析 \N 序列,并可能与数据中的 \ 混淆。
设置 date_time_input_format best_effort 以便解析各种格式的 DateTime字段。例如,识别像“2000-01-01 01:02”这样没有秒数的 ISO-8601 时间字符串。如果没有此设置,则仅允许使用固定的 DateTime 格式。
非规范化数据
数据以 [规范化形式] (https://en.wikipedia.org/wiki/Database_normalization#Normal_forms) 在多个表格中呈现。这意味着如果你想进行如查询菜单项中的菜名这类的查询,则必须执行 JOIN。在典型的分析任务中,预先处理联接的数据以避免每次都执行“联接”会更有效率。这中操作被称为“非规范化”数据。
我们将创建一个表“menu_item_denorm”,其中将包含所有联接在一起的数据:
CREATE TABLE menu_item_denorm
ENGINE = MergeTree ORDER BY (dish_name, created_at)
AS SELECT
    price,
    high_price,
    created_at,
    updated_at,
    xpos,
    ypos,
    dish.id AS dish_id,
    dish.name AS dish_name,
    dish.description AS dish_description,
    dish.menus_appeared AS dish_menus_appeared,
    dish.times_appeared AS dish_times_appeared,
    dish.first_appeared AS dish_first_appeared,
    dish.last_appeared AS dish_last_appeared,
    dish.lowest_price AS dish_lowest_price,
    dish.highest_price AS dish_highest_price,
    menu.id AS menu_id,
    menu.name AS menu_name,
    menu.sponsor AS menu_sponsor,
    menu.event AS menu_event,
    menu.venue AS menu_venue,
    menu.place AS menu_place,
    menu.physical_description AS menu_physical_description,
    menu.occasion AS menu_occasion,
    menu.notes AS menu_notes,
    menu.call_number AS menu_call_number,
    menu.keywords AS menu_keywords,
    menu.language AS menu_language,
    menu.date AS menu_date,
    menu.location AS menu_location,
    menu.location_type AS menu_location_type,
    menu.currency AS menu_currency,
    menu.currency_symbol AS menu_currency_symbol,
    menu.status AS menu_status,
    menu.page_count AS menu_page_count,
    menu.dish_count AS menu_dish_count
FROM menu_item
    JOIN dish ON menu_item.dish_id = dish.id
    JOIN menu_page ON menu_item.menu_page_id = menu_page.id
    JOIN menu ON menu_page.menu_id = menu.id;
验证数据
请求:
SELECT count() FROM menu_item_denorm;
结果:
┌─count()─┐
│ 1329175 │
└─────────┘
运行一些查询
菜品的平均历史价格
请求:
SELECT
    round(toUInt32OrZero(extract(menu_date, '^\\d{4}')), -1) AS d,
    count(),
    round(avg(price), 2),
    bar(avg(price), 0, 100, 100)
FROM menu_item_denorm
WHERE (menu_currency = 'Dollars') AND (d > 0) AND (d < 2022)
GROUP BY d
ORDER BY d ASC;
结果:
┌────d─┬─count()─┬─round(avg(price), 2)─┬─bar(avg(price), 0, 100, 100)─┐
│ 1850 │     618 │                  1.5 │ █▍                           │
│ 1860 │    1634 │                 1.29 │ █▎                           │
│ 1870 │    2215 │                 1.36 │ █▎                           │
│ 1880 │    3909 │                 1.01 │ █                            │
│ 1890 │    8837 │                  1.4 │ █▍                           │
│ 1900 │  176292 │                 0.68 │ ▋                            │
│ 1910 │  212196 │                 0.88 │ ▊                            │
│ 1920 │  179590 │                 0.74 │ ▋                            │
│ 1930 │   73707 │                  0.6 │ ▌                            │
│ 1940 │   58795 │                 0.57 │ ▌                            │
│ 1950 │   41407 │                 0.95 │ ▊                            │
│ 1960 │   51179 │                 1.32 │ █▎                           │
│ 1970 │   12914 │                 1.86 │ █▋                           │
│ 1980 │    7268 │                 4.35 │ ████▎                        │
│ 1990 │   11055 │                 6.03 │ ██████                       │
│ 2000 │    2467 │                11.85 │ ███████████▋                 │
│ 2010 │     597 │                25.66 │ █████████████████████████▋   │
└──────┴─────────┴──────────────────────┴──────────────────────────────┘
带上一粒盐。
汉堡价格
请求:
SELECT
    round(toUInt32OrZero(extract(menu_date, '^\\d{4}')), -1) AS d,
    count(),
    round(avg(price), 2),
    bar(avg(price), 0, 50, 100)
FROM menu_item_denorm
WHERE (menu_currency = 'Dollars') AND (d > 0) AND (d < 2022) AND (dish_name ILIKE '%burger%')
GROUP BY d
ORDER BY d ASC;
结果:
┌────d─┬─count()─┬─round(avg(price), 2)─┬─bar(avg(price), 0, 50, 100)───────────┐
│ 1880 │       2 │                 0.42 │ ▋                                     │
│ 1890 │       7 │                 0.85 │ █▋                                    │
│ 1900 │     399 │                 0.49 │ ▊                                     │
│ 1910 │     589 │                 0.68 │ █▎                                    │
│ 1920 │     280 │                 0.56 │ █                                     │
│ 1930 │      74 │                 0.42 │ ▋                                     │
│ 1940 │     119 │                 0.59 │ █▏                                    │
│ 1950 │     134 │                 1.09 │ ██▏                                   │
│ 1960 │     272 │                 0.92 │ █▋                                    │
│ 1970 │     108 │                 1.18 │ ██▎                                   │
│ 1980 │      88 │                 2.82 │ █████▋                                │
│ 1990 │     184 │                 3.68 │ ███████▎                              │
│ 2000 │      21 │                 7.14 │ ██████████████▎                       │
│ 2010 │       6 │                18.42 │ ████████████████████████████████████▋ │
└──────┴─────────┴──────────────────────┴───────────────────────────────────────┘
###伏特加{#query-vodka}
请求:
SELECT
    round(toUInt32OrZero(extract(menu_date, '^\\d{4}')), -1) AS d,
    count(),
    round(avg(price), 2),
    bar(avg(price), 0, 50, 100)
FROM menu_item_denorm
WHERE (menu_currency IN ('Dollars', '')) AND (d > 0) AND (d < 2022) AND (dish_name ILIKE '%vodka%')
GROUP BY d
ORDER BY d ASC;
结果:
┌────d─┬─count()─┬─round(avg(price), 2)─┬─bar(avg(price), 0, 50, 100)─┐
│ 1910 │       2 │                    0 │                             │
│ 1920 │       1 │                  0.3 │ ▌                           │
│ 1940 │      21 │                 0.42 │ ▋                           │
│ 1950 │      14 │                 0.59 │ █▏                          │
│ 1960 │     113 │                 2.17 │ ████▎                       │
│ 1970 │      37 │                 0.68 │ █▎                          │
│ 1980 │      19 │                 2.55 │ █████                       │
│ 1990 │      86 │                  3.6 │ ███████▏                    │
│ 2000 │       2 │                 3.98 │ ███████▊                    │
└──────┴─────────┴──────────────────────┴─────────────────────────────┘
要查询 Vodka,必须声明通过 ILIKE '%vodka%' 进行查询。
鱼子酱
列出鱼子酱的价格。另外,列出任何带有鱼子酱的菜肴的名称。
请求:
SELECT
    round(toUInt32OrZero(extract(menu_date, '^\\d{4}')), -1) AS d,
    count(),
    round(avg(price), 2),
    bar(avg(price), 0, 50, 100),
    any(dish_name)
FROM menu_item_denorm
WHERE (menu_currency IN ('Dollars', '')) AND (d > 0) AND (d < 2022) AND (dish_name ILIKE '%caviar%')
GROUP BY d
ORDER BY d ASC;
结果:
┌────d─┬─count()─┬─round(avg(price), 2)─┬─bar(avg(price), 0, 50, 100)──────┬─any(dish_name)──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
│ 1090 │       1 │                    0 │                                  │ Caviar                                                                                                                              │
│ 1880 │       3 │                    0 │                                  │ Caviar                                                                                                                              │
│ 1890 │      39 │                 0.59 │ █▏                               │ Butter and caviar                                                                                                                   │
│ 1900 │    1014 │                 0.34 │ ▋                                │ Anchovy Caviar on Toast                                                                                                             │
│ 1910 │    1588 │                 1.35 │ ██▋                              │ 1/1 Brötchen Caviar                                                                                                                 │
│ 1920 │     927 │                 1.37 │ ██▋                              │ ASTRAKAN CAVIAR                                                                                                                     │
│ 1930 │     289 │                 1.91 │ ███▋                             │ Astrachan caviar                                                                                                                    │
│ 1940 │     201 │                 0.83 │ █▋                               │ (SPECIAL) Domestic Caviar Sandwich                                                                                                  │
│ 1950 │      81 │                 2.27 │ ████▌                            │ Beluga Caviar                                                                                                                       │
│ 1960 │     126 │                 2.21 │ ████▍                            │ Beluga Caviar                                                                                                                       │
│ 1970 │     105 │                 0.95 │ █▊                               │ BELUGA MALOSSOL CAVIAR AMERICAN DRESSING                                                                                            │
│ 1980 │      12 │                 7.22 │ ██████████████▍                  │ Authentic Iranian Beluga Caviar the world's finest black caviar presented in ice garni and a sampling of chilled 100° Russian vodka │
│ 1990 │      74 │                14.42 │ ████████████████████████████▋    │ Avocado Salad, Fresh cut avocado with caviare                                                                                       │
│ 2000 │       3 │                 7.82 │ ███████████████▋                 │ Aufgeschlagenes Kartoffelsueppchen mit Forellencaviar                                                                               │
│ 2010 │       6 │                15.58 │ ███████████████████████████████▏ │ "OYSTERS AND PEARLS" "Sabayon" of Pearl Tapioca with Island Creek Oysters and Russian Sevruga Caviar                                │
└──────┴─────────┴──────────────────────┴──────────────────────────────────┴─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
至少他们有伏特加配鱼子酱。真棒。
在线 Playground
此数据集已经上传到了 ClickHouse Playground 中,example。